RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2020 Volume 16, 054, 13 pp. (Mi sigma1591)

This article is cited in 2 papers

Reduced Forms of Linear Differential Systems and the Intrinsic Galois–Lie Algebra of Katz

Moulay Barkatoua, Thomas Cluzeaua, Lucia Di Viziob, Jacques-Arthur Weila

a XLIM, UMR7252, Université de Limoges et CNRS, 123 avenue Albert Thomas, 87060 Limoges Cedex, France
b Université Paris-Saclay, UVSQ, CNRS, Laboratoire de mathématiques de Versailles, 78000, Versailles, France

Abstract: Generalizing the main result of [Aparicio-Monforte A., Compoint E., Weil J.-A., J. Pure Appl. Algebra 217 (2013), 1504–1516], we prove that a linear differential system is in reduced form in the sense of Kolchin and Kovacic if and only if any differential module in an algebraic construction admits a constant basis. Then we derive an explicit version of this statement. We finally deduce some properties of the Lie algebra of Katz's intrinsic Galois group.

Keywords: linear differential systems, differential Galois theory, Lie algebras, reduced forms.

MSC: 34M03, 34M15, 34C20

Received: January 20, 2020; in final form June 4, 2020; Published online June 17, 2020

Language: English

DOI: 10.3842/SIGMA.2020.054



Bibliographic databases:
ArXiv: 1912.10567


© Steklov Math. Inst. of RAS, 2025