On the Irreducibility of Some Quiver Varieties
Claudio Bartocci ab ,
Ugo Bruzzo cdefg ,
Valeriano Lanza h ,
Claudio L. S. Rava a a Dipartimento di Matematica, Università di Genova, Via Dodecaneso 35, 16146 Genova, Italy
b Laboratoire SPHERE, CNRS, Université Paris Diderot (Paris 7), 75013 Paris, France
c INFN (Istituto Nazionale di Fisica Nucleare), Sezione di Trieste, Italy
d SISSA (Scuola Internazionale Superiore di Studi Avanzati),
Via Bonomea 265, 34136 Trieste, Italy
e Departamento de Matemática, Universidade Federal da Paraíba, Campus I, João Pessoa, PB, Brasil
f IGAP (Institute for Geometry and Physics), Trieste, Italy
g Arnold-Regge Center for Algebra, Geometry and Theoretical Physics, Torino, Italy
h Departamento de Análise, IME, Universidade Federal Fluminense,
Rua Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, Brazil
Abstract:
We prove that certain quiver varieties are irreducible and therefore are isomorphic to Hilbert schemes of points of the total spaces of the bundles
$\mathcal O_{\mathbb P^1}(-n)$ for
$n \ge 1$ .
Keywords:
quiver representations, Hilbert schemes of points.
MSC: 14D20 ,
14D21 ,
14J60 ,
16G20 Received: March 13, 2020 ; in final form
July 10, 2020 ; Published online
July 26, 2020
Language: English
DOI:
10.3842/SIGMA.2020.069
© , 2024