RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2020 Volume 16, 072, 20 pp. (Mi sigma1609)

This article is cited in 7 papers

Barnes–Ismagilov Integrals and Hypergeometric Functions of the Complex Field

Yury A. Neretinabcd

a Institute for Theoretical and Experimental Physics, Moscow, Russia
b Institute for Information Transmission Problems, Moscow, Russia
c Wolfgang Pauli Institut, c/o Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, A-1090 Wien, Austria
d Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Russia

Abstract: We examine a family ${}_pG_{q}^{\mathbb C}\big[\genfrac{}{}{0pt}{}{(a)}{(b)};z\big]$ of integrals of Mellin–Barnes type over the space ${\mathbb Z}\times {\mathbb R}$, such functions $G$ naturally arise in representation theory of the Lorentz group. We express ${}_pG_{q}^{\mathbb C}(z)$ as quadratic expressions in the generalized hypergeometric functions ${}_{p}F_{q-1}$ and discuss further properties of the functions ${}_pG_{q}^{\mathbb C}(z)$.

Keywords: Mellin–Barnes integrals, Mellin transform, hypergeometric functions, Lorentz group.

MSC: 33C20, 33C70, 22E43

Received: April 9, 2020; in final form July 17, 2020; Published online August 2, 2020

Language: English

DOI: 10.3842/SIGMA.2020.072



Bibliographic databases:
ArXiv: 1910.10686


© Steklov Math. Inst. of RAS, 2024