RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2020 Volume 16, 083, 11 pp. (Mi sigma1620)

On Products of Delta Distributions and Resultants

Michel Bauerabcde, Jean-Bernard Zuberfg

a Département de mathematiques et applications, École normale supérieure, F-75005 Paris, France
b CNRS, UMR 8553, DMA, ENS, F-75005 Paris, France
c CNRS, UMR 3681, IPhT, F-91191 Gif-sur-Yvette, France
d PSL Research University, F-75005 Paris, France
e Institut de Physique Théorique de Saclay, CEA-Saclay, F-91191 Gif-sur-Yvette, France
f Sorbonne Université, UMR 7589, LPTHE, F-75005, Paris, France
g CNRS, UMR 7589, LPTHE, F-75005, Paris, France

Abstract: We prove an identity in integral geometry, showing that if $P_x$ and $Q_x$ are two polynomials, $\int \mathrm{d}x\, \delta(P_x) \otimes \delta(Q_x)$ is proportional to $\delta(R)$ where $R$ is the resultant of $P_x$ and $Q_x$.

Keywords: measures and distributions, integral geometry.

MSC: 46F10, 49Q15

Received: June 16, 2020; in final form August 20, 2020; Published online August 25, 2020

Language: English

DOI: 10.3842/SIGMA.2020.083



Bibliographic databases:
ArXiv: 2006.08301


© Steklov Math. Inst. of RAS, 2024