RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2020 Volume 16, 094, 18 pp. (Mi sigma1631)

On Abelianity Lines in Elliptic $W$-Algebras

Jean Avana, Luc Frappatb, Eric Ragoucyb

a Laboratoire de Physique Théorique et Modélisation, CY Cergy Paris Université, CNRS, F-95302 Cergy-Pontoise, France
b Laboratoire d'Annecy-le-Vieux de Physique Théorique LAPTh, Université Grenoble Alpes, USMB, CNRS, F-74000 Annecy, France

Abstract: We present a systematic derivation of the abelianity conditions for the $q$-deformed $W$-algebras constructed from the elliptic quantum algebra $\mathcal{A}_{q,p}\big(\widehat{\mathfrak{gl}}(N)_{c}\big)$. We identify two sets of conditions on a given critical surface yielding abelianity lines in the moduli space ($p, q, c$). Each line is identified as an intersection of a countable number of critical surfaces obeying diophantine consistency conditions. The corresponding Poisson brackets structures are then computed for which some universal features are described.

Keywords: elliptic quantum algebras, $W$-algebras.

MSC: 17B37, 17B68

Received: May 8, 2020; in final form September 22, 2020; Published online September 30, 2020

Language: English

DOI: 10.3842/SIGMA.2020.094



Bibliographic databases:
ArXiv: 2005.03579


© Steklov Math. Inst. of RAS, 2024