RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2020 Volume 16, 097, 57 pp. (Mi sigma1634)

Differential Calculus of Hochschild Pairs for Infinity-Categories

Isamu Iwanari

Mathematical Institute, Tohoku University, 6-3 Aramakiaza, Sendai, Miyagi, 980-8578, Japan

Abstract: In this paper, we provide a conceptual new construction of the algebraic structure on the pair of the Hochschild cohomology spectrum (cochain complex) and Hochschild homology spectrum, which is analogous to the structure of calculus on a manifold. This algebraic structure is encoded by a two-colored operad introduced by Kontsevich and Soibelman. We prove that for a stable idempotent-complete infinity-category, the pair of its Hochschild cohomology and homology spectra naturally admits the structure of algebra over the operad. Moreover, we prove a generalization to the equivariant context.

Keywords: Hochschild cohomology, Hochschild homology, operad, $\infty$-category.

MSC: 16E40, 18N60, 18M60

Received: February 25, 2020; in final form September 4, 2020; Published online October 2, 2020

Language: English

DOI: 10.3842/SIGMA.2020.097



Bibliographic databases:
ArXiv: 1904.02359


© Steklov Math. Inst. of RAS, 2025