RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2020 Volume 16, 117, 15 pp. (Mi sigma1655)

A Gneiting-Like Method for Constructing Positive Definite Functions on Metric Spaces

Victor S. Barbosaa, Valdir A. Menegattob

a Centro Tecnológico de Joinville-UFSC, Rua Dona Francisca, 8300. Bloco U, 89219-600 Joinville SC, Brazil
b Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Caixa Postal 668, 13560-970, São Carlos - SP, Brazil

Abstract: This paper is concerned with the construction of positive definite functions on a cartesian product of quasi-metric spaces using generalized Stieltjes and complete Bernstein functions. The results we prove are aligned with a well-established method of T. Gneiting to construct space-time positive definite functions and its many extensions. Necessary and sufficient conditions for the strict positive definiteness of the models are provided when the spaces are metric.

Keywords: positive definite functions, generalized Stieltjes functions, Bernstein functions, Gneiting's model, products of metric spaces.

MSC: 42A82, 43A35

Received: June 23, 2020; in final form November 7, 2020; Published online November 19, 2020

Language: English

DOI: 10.3842/SIGMA.2020.117



Bibliographic databases:
ArXiv: 2006.12217


© Steklov Math. Inst. of RAS, 2024