RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2021 Volume 17, 032, 56 pp. (Mi sigma1715)

This article is cited in 2 papers

An Introduction to Motivic Feynman Integrals

Claudia Rella

Section de Mathématiques, Université de Genève, Genève, CH-1211 Switzerland

Abstract: This article gives a short step-by-step introduction to the representation of parametric Feynman integrals in scalar perturbative quantum field theory as periods of motives. The application of motivic Galois theory to the algebro-geometric and categorical structures underlying Feynman graphs is reviewed up to the current state of research. The example of primitive log-divergent Feynman graphs in scalar massless $\phi^4$ quantum field theory is analysed in detail.

Keywords: scattering amplitudes, Feynman diagrams, multiple zeta values, Hodge structures, periods of motives, Galois theory, Tannakian categories.

MSC: 81-02, 14-02, 81Q30, 81T18, 81T15, 14C15, 14C30, 14F40, 11R32

Received: August 30, 2020; in final form March 3, 2021; Published online March 26, 2021

Language: English

DOI: 10.3842/SIGMA.2021.032



Bibliographic databases:
ArXiv: 2009.00426


© Steklov Math. Inst. of RAS, 2024