RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2021 Volume 17, 063, 26 pp. (Mi sigma1745)

This article is cited in 2 papers

Completeness of SoV Representation for $\mathrm{SL}(2,\mathbb R)$ Spin Chains

Sergey É. Derkachova, Karol K. Kozlowskib, Alexander N. Manashovac

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, Fontanka 27, 191023 St. Petersburg, Russia
b Univ Lyon, ENS de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342 Lyon, France
c Institut für Theoretische Physik, Universität Hamburg, D-22761 Hamburg, Germany

Abstract: This work develops a new method, based on the use of Gustafson's integrals and on the evaluation of singular integrals, allowing one to establish the unitarity of the separation of variables transform for infinite-dimensional representations of rank one quantum integrable models. We examine in detail the case of the $\mathrm{SL}(2,\mathbb R)$ spin chains.

Keywords: spin chains, separation of variables, Gustafson's integrals.

MSC: 33C70, 81R12

Received: March 8, 2021; in final form June 14, 2021; Published online June 25, 2021

Language: English

DOI: 10.3842/SIGMA.2021.063



Bibliographic databases:
ArXiv: 2102.13570


© Steklov Math. Inst. of RAS, 2024