RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2021 Volume 17, 065, 19 pp. (Mi sigma1747)

This article is cited in 3 papers

New Techniques for Worldline Integration

James P. Edwardsa, C. Moctezuma Mataa, Uwe Müllerb, Christian Schuberta

a Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Apdo. Postal 2-82, C.P. 58040, Morelia, Michoacan, Mexico
b Brandenburg an der Havel, Brandenburg, Germany

Abstract: The worldline formalism provides an alternative to Feynman diagrams in the construction of amplitudes and effective actions that shares some of the superior properties of the organization of amplitudes in string theory. In particular, it allows one to write down integral representations combining the contributions of large classes of Feynman diagrams of different topologies. However, calculating these integrals analytically without splitting them into sectors corresponding to individual diagrams poses a formidable mathematical challenge. We summarize the history and state of the art of this problem, including some natural connections to the theory of Bernoulli numbers and polynomials and multiple zeta values.

Keywords: worldline formalism, Bernoulli numbers, Bernoulli polynomials, Feynman diagram.

MSC: 11B68, 33C65, 81Q30

Received: March 1, 2021; in final form June 23, 2021; Published online July 3, 2021

Language: English

DOI: 10.3842/SIGMA.2021.065



Bibliographic databases:
ArXiv: 2106.12071


© Steklov Math. Inst. of RAS, 2024