Abstract:
Given a path geometry on a surface $\mathcal{U}$, we construct a causal structure on a four-manifold which is the configuration space of non-incident pairs (point, path) on $\mathcal{U}$. This causal structure corresponds to a conformal structure if and only if $\mathcal{U}$ is a real projective plane, and the paths are lines. We give the example of the causal structure given by a symmetric sextic, which corresponds on an ${\rm SL}(2,{\mathbb R})$-invariant projective structure where the paths are ellipses of area $\pi$ centred at the origin. We shall also discuss a causal structure on a seven-dimensional manifold corresponding to non-incident pairs (point, conic) on a projective plane.