RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2007 Volume 3, 058, 14 pp. (Mi sigma184)

This article is cited in 5 papers

From $\mathfrak{su}(2)$ Gaudin Models to Integrable Tops

Matteo Petreraa, Orlando Ragniscobc

a Zentrum Mathematik, Technische Universität München, Boltzmannstr. 3, D-85747 Garching bei München, Germany
b Sezione INFN, Roma Tre, Via della Vasca Navale 84, 00146 Roma, Italy
c Dipartimento di Fisica E. Amaldi, Università degli Studi Roma Tre

Abstract: In the present paper we derive two well-known integrable cases of rigid body dynamics (the Lagrange top and the Clebsch system) performing an algebraic contraction on the two-body Lax matrices governing the (classical) $\mathfrak{su}(2)$ Gaudin models. The procedure preserves the linear $r$-matrix formulation of the ancestor models. We give the Lax representation of the resultingintegrable systems in terms of $\mathfrak{su}(2)$ Lax matrices with and elliptic dependencies on the spectral parameter. We finally give some results about the many-body extensions of the constructed systems.

Keywords: Gaudin models; spinning tops.

MSC: 70E17; 70E40; 37J35

Received: March 13, 2006; Published online April 20, 2007

Language: English

DOI: 10.3842/SIGMA.2007.058



Bibliographic databases:
ArXiv: math-ph/0703044


© Steklov Math. Inst. of RAS, 2025