RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2007 Volume 3, 060, 31 pp. (Mi sigma186)

This article is cited in 17 papers

Generating Operator of XXX or Gaudin Transfer Matrices Has Quasi-Exponential Kernel

Evgeny Mukhina, Vitaly Tarasovab, Alexander Varchenkoc

a Department of Mathematical Sciences, Indiana University–Purdue University Indianapolis, 402 North Blackford St, Indianapolis, IN 46202-3216, USA
b St. Petersburg Branch of Steklov Mathematical Institute, Fontanka 27, St. Petersburg, 191023, Russia
c Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3250, USA

Abstract: Let $M$ be the tensor product of finite-dimensional polynomial evaluation $Y(\mathfrak{gl}_N)$-modules. Consider the universal difference operator $\mathfrak D=\sum\limits_{k=0}^N (-1)^k\mathfrak T_k(u) e^{-k\partial _u }$ whose coefficients $\mathfrak T_k(u)\colon M\to M$ are the XXX transfer matrices associated with $M$. We show that the difference equation $\mathfrak D f=0$ for an $M$-valued function $f$ has a basis of solutions consisting of quasi-exponentials. We prove the same for the universal differential operator $D=\sum\limits_{k=0}^N (-1)^k\mathcal S_k(u)\partial_u^{N-k}$ whose coefficients $\mathcal S_k(u)\colon\mathcal M\to\mathcal M$ are the Gaudin transfer matrices associated with the tensor product $\mathcal M$ of finite-dimensional polynomial evaluation $\mathfrak{gl}_N[x]$-modules.

Keywords: Gaudin model; XXX model; universal differential operator.

MSC: 34M35; 82B23; 17B67

Received: March 28, 2007; Published online April 25, 2007

Language: English

DOI: 10.3842/SIGMA.2007.060



Bibliographic databases:
ArXiv: math.QA/0703893


© Steklov Math. Inst. of RAS, 2024