RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2007 Volume 3, 065, 11 pp. (Mi sigma191)

This article is cited in 11 papers

The Rahman Polynomials Are Bispectral

F. Alberto Grünbaum

Department of Mathematics, University of California, Berkeley, CA 94720, USA

Abstract: In a very recent paper, M. Rahman introduced a remarkable family of polynomials in two variables as the eigenfunctions of the transition matrix for a nontrivial Markov chain due to M. Hoare and M. Rahman. I indicate here that these polynomials are bispectral. This should be just one of the many remarkable properties enjoyed by these polynomials. For several challenges, including finding a general proof of some of the facts displayed here the reader should look at the last section of this paper.

Keywords: bispectral property; multivariable polynomials; rings of commuting difference operators.

MSC: 33C45; 22E45

Received: February 1, 2007; in final form April 22, 2007; Published online May 3, 2007

Language: English

DOI: 10.3842/SIGMA.2007.065



Bibliographic databases:
ArXiv: 0705.0468


© Steklov Math. Inst. of RAS, 2025