RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2023 Volume 19, 019, 23 pp. (Mi sigma1914)

Higher Braidings of Diagonal Type

Michael Cuntz, Tobias Ohrmann

Leibniz Universität Hannover, Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Fakultät für Mathematik und Physik, Welfengarten 1, D-30167 Hannover, Germany

Abstract: Heckenberger introduced the Weyl groupoid of a finite-dimensional Nichols algebra of diagonal type. We replace the matrix of its braiding by a higher tensor and present a construction which yields further Weyl groupoids. Abelian cohomology theory gives evidence for the existence of a higher braiding associated to such a tensor.

Keywords: Nichols algebra, braiding, Weyl groupoid.

MSC: 17B22, 16T30, 20F55

Received: May 30, 2022; in final form March 27, 2023; Published online April 6, 2023

Language: English

DOI: 10.3842/SIGMA.2023.019



Bibliographic databases:
ArXiv: 2204.05720


© Steklov Math. Inst. of RAS, 2024