RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2023 Volume 19, 046, 47 pp. (Mi sigma1941)

Algebraic Bethe Ansatz for the Open XXZ Spin Chain with Non-Diagonal Boundary Terms via $U_{\mathfrak{q}}\mathfrak{sl}_2$ Symmetry

Dmitry Chernyakab, Azat M. Gainutdinovc, Jesper Lykke Jacobsendab, Hubert Saleureb

a Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
b Institut de Physique Théorique, Paris Saclay, CEA, CNRS, 91191 Gif-sur-Yvette, France
c Institut Denis Poisson, CNRS, Université de Tours, Parc de Grandmont, 37200 Tours, France
d Sorbonne Université, Ecole Normale Supérieure, CNRS, Laboratoire de Physique (LPENS), 75005 Paris, France
e USC Physics and Astronomy Department, Los Angeles Ca 90089, USA

Abstract: We derive by the traditional algebraic Bethe ansatz method the Bethe equations for the general open XXZ spin chain with non-diagonal boundary terms under the Nepomechie constraint [J. Phys. A 37 (2004), 433–440, arXiv:hep-th/0304092]. The technical difficulties due to the breaking of $\mathsf{U}(1)$ symmetry and the absence of a reference state are overcome by an algebraic construction where the two-boundary Temperley–Lieb Hamiltonian is realised in a new $U_{\mathfrak{q}}\mathfrak{sl}_2$-invariant spin chain involving infinite-dimensional Verma modules on the edges [J. High Energy Phys. 2022 (2022), no. 11, 016, 64 pages, arXiv:2207.12772]. The equivalence of the two Hamiltonians is established by proving Schur–Weyl duality between $U_{\mathfrak{q}}\mathfrak{sl}_2$ and the two-boundary Temperley–Lieb algebra. In this framework, the Nepomechie condition turns out to have a simple algebraic interpretation in terms of quantum group fusion rules.

Keywords: quantum integrable models, non-diagonal K-matrices, Verma modules, Temperley–Lieb algebras.

MSC: 81R50, 81R12, 81U15, 16T25

Received: January 26, 2023; in final form July 4, 2023; Published online July 16, 2023

Language: English

DOI: 10.3842/SIGMA.2023.046


ArXiv: 2212.09696


© Steklov Math. Inst. of RAS, 2024