RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2007 Volume 3, 075, 7 pp. (Mi sigma201)

This article is cited in 28 papers

The Veldkamp Space of Two-Qubits

Metod Sanigaa, Michel Planatb, Petr Pracnac, Hans Havlicekd

a Astronomical Institute, Slovak Academy of Sciences, SK-05960 Tatranská Lomnica, Slovak Republic
b Institut FEMTO — ST, CNRS, Département LPMO, 32 Avenue de l'Observatoire, F-25044 Besançon Cedex, France
c J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejskova 3, CZ-182 23 Prague 8, Czech Republic
d Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner Hauptstraße 8-10, A-1040 Vienna, Austria

Abstract: Given a remarkable representation of the generalized Pauli operators of two-qubits in terms of the points of the generalized quadrangle of order two, $W(2)$, it is shown that specific subsets of these operators can also be associated with the points and lines of the four-dimensional projective space over the Galois field with two elements – the so-called Veldkamp space of $W(2)$. An intriguing novelty is the recognition of (uni- and tri-centric) triads and specific pentads of the Pauli operators in addition to the "classical" subsets answering to geometric hyperplanes of $W(2)$.

Keywords: generalized quadrangles; Veldkamp spaces; Pauli operators of two-qubits.

MSC: 51Exx; 81R99

Received: April 13, 2007; in final form June 18, 2007; Published online June 29, 2007

Language: English

DOI: 10.3842/SIGMA.2007.075



Bibliographic databases:
ArXiv: 0704.0495


© Steklov Math. Inst. of RAS, 2024