RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2024 Volume 20, 039, 19 pp. (Mi sigma2041)

Entropy for Monge–Ampère Measures in the Prescribed Singularities Setting

Eleonora Di Nezzaab, Stefano Trapanic, Antonio Trusianid

a DMA, Ecole Normale Supérieure, Université PSL, CNRS, 45 Rue d’Ulm, 75005 Paris, France
b IMJ-PRG, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
c Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy
d Chalmers University of Technology, Chalmers tvärgata 3, 41296 Göteborg, Sweden

Abstract: In this note, we generalize the notion of entropy for potentials in a relative full Monge–Ampère mass $\mathcal{E}(X, \theta, \phi)$, for a model potential $\phi$. We then investigate stability properties of this condition with respect to blow-ups and perturbation of the cohomology class. We also prove a Moser–Trudinger type inequality with general weight and we show that functions with finite entropy lie in a relative energy class $\mathcal{E}^{\frac{n}{n-1}}(X, \theta, \phi)$ (provided $n>1$), while they have the same singularities of $\phi$ when $n=1$.

Keywords: Kähler manifolds, Monge–Ampère energy, entropy, big classes.

MSC: 32W20, 32U05, 32Q15, 35A23

Received: October 16, 2023; in final form May 4, 2024; Published online May 8, 2024

Language: English

DOI: 10.3842/SIGMA.2024.039


ArXiv: 2310.10152


© Steklov Math. Inst. of RAS, 2024