RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2024 Volume 20, 050, 16 pp. (Mi sigma2052)

A Note on BKP for the Kontsevich Matrix Model with Arbitrary Potential

Gaëtan Borota, Raimar Wulkenhaarb

a Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
b Mathematisches Institut, Universität Münster, Einsteinstr. 62, 48149 Münster, Germany

Abstract: We exhibit the Kontsevich matrix model with arbitrary potential as a BKP tau-function with respect to polynomial deformations of the potential. The result can be equivalently formulated in terms of Cartan–Plücker relations of certain averages of Schur $Q$-function. The extension of a Pfaffian integration identity of de Bruijn to singular kernels is instrumental in the derivation of the result.

Keywords: BKP hierarchy, matrix models, classical integrability.

MSC: 37K10, 37K20, 15A15

Received: January 3, 2024; in final form June 1, 2024; Published online June 11, 2024

Language: English

DOI: 10.3842/SIGMA.2024.050


ArXiv: 2306.01501


© Steklov Math. Inst. of RAS, 2024