RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2024 Volume 20, 061, 47 pp. (Mi sigma2063)

Reduction of $L_\infty$-Algebras of Observables on Multisymplectic Manifolds

Casey Blackera, Antonio Michele Mitib, Leonid Ryvkinc

a Department of Mathematical Sciences, George Mason University, 4400 University Dr, Fairfax, VA 22030, USA
b Dipartimento di Matematica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
c Institut Camille Jordan, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, 69622 Villeurbann, France

Abstract: We develop a reduction scheme for the $L_\infty$-algebra of observables on a premultisymplectic manifold $(M,\omega)$ in the presence of a compatible Lie algebra action $\mathfrak{g}\curvearrowright M$ and subset $N\subset M$. This reproduces in the symplectic setting the Poisson algebra of observables on the Marsden–Weinstein–Meyer symplectic reduced space, whenever the reduced space exists, but is otherwise distinct from the Dirac, Śniatycki–Weinstein, and Arms–Cushman–Gotay observable reduction schemes. We examine various examples, including multicotangent bundles and multiphase spaces, and we conclude with a discussion of applications to classical field theories and quantization.

Keywords: $L_\infty$-algebras, multisymplectic manifolds, moment maps.

MSC: 53D05, 53D20, 70S05, 70S10

Received: October 24, 2023; in final form June 24, 2024; Published online July 3, 2024

Language: English

DOI: 10.3842/SIGMA.2024.061


ArXiv: 2206.03137


© Steklov Math. Inst. of RAS, 2024