RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2025 Volume 21, 017, 32 pp. (Mi sigma2134)

The Geometry of Generalised Spin$^r$ Spinors on Projective Spaces

Diego Artachoa, Jordan Hofmannb

a Imperial College London, London SW7 2AZ, UK
b King’s College London, London WC2R 2LS, UK

Abstract: In this paper, we adapt the characterisation of the spin representation via exterior forms to the generalised spin$^r$ context. We find new invariant spin$^r$ spinors on the projective spaces $\mathbb{CP}^n$, $\mathbb{HP}^n$, and the Cayley plane $\mathbb{OP}^2$ for all their homogeneous realisations. Specifically, for each of these realisations, we provide a complete description of the space of invariant spin$^r$ spinors for the minimum value of $r$ for which this space is non-zero. Additionally, we demonstrate some geometric implications of the existence of special spin$^r$ spinors on these spaces.

Keywords: special spinors, projective spaces, generalized spin structures, spin$^c$, spin$^h$.

MSC: 53C27, 15A66, 57R15

Received: July 1, 2024; in final form March 1, 2025; Published online March 11, 2025

Language: English

DOI: 10.3842/SIGMA.2025.017


ArXiv: 2406.18337


© Steklov Math. Inst. of RAS, 2025