RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2025 Volume 21, 032, 32 pp. (Mi sigma2149)

Bilateral Bailey Lattices and Andrews–Gordon Type Identities

Jehanne Doussea, Frédéric Jouhetb, Isaac Konanb

a Université de Genève, 7–9, rue Conseil Général, 1205 Genève, Switzerland
b Univ Lyon, Université Claude Bernard Lyon 1, UMR5208, Institut Camille Jordan, 69622 Villeurbanne, France

Abstract: We show that the Bailey lattice can be extended to a bilateral version in just a few lines from the bilateral Bailey lemma, using a very simple lemma transforming bilateral Bailey pairs relative to $a$ into bilateral Bailey pairs relative to $a/q$. Using this and similar lemmas, we give bilateral versions and simple proofs of other (new and known) Bailey lattices, including a Bailey lattice of Warnaar and the inverses of Bailey lattices of Lovejoy. As consequences of our bilateral point of view, we derive new $m$-versions of the Andrews–Gordon identities, Bressoud's identities, a new companion to Bressoud's identities, and the Bressoud–Göllnitz–Gordon identities. Finally, we give a new elementary proof of another very general identity of Bressoud using one of our Bailey lattices.

Keywords: Bailey lemma, Bailey lattice, Andrews–Gordon identities, Bressoud identities, $q$-series, bilateral series.

MSC: 11P84, 05A30, 33D15, 33D90

Received: October 15, 2024; in final form April 11, 2025; Published online April 29, 2025

Language: English

DOI: 10.3842/SIGMA.2025.032


ArXiv: 2307.02346


© Steklov Math. Inst. of RAS, 2025