RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2025 Volume 21, 040, 48 pp. (Mi sigma2157)

This article is cited in 1 paper

Integrable Dynamics in Projective Geometry via Dimers and Triple Crossing Diagram Maps on the Cylinder

Niklas Christoph Affolterabc, Terrence Georged, Sanjay Ramassamye

a Département de mathématiques et applications, École Normale Supérieure, CNRS, PSL University, 45 rue d'Ulm, 75005 Paris, France
b Institute of Discrete Mathematics and Geometry, TU Wien, Wiedner Hauptstraße 8–10/104, 1040 Wien, Austria
c Technische Universität Berlin, Institute of Mathematics, Strasse des 17. Juni 136, 10623 Berlin, Germany
d Department of Mathematics, UCLA, 520 Portola Plaza, Los Angeles, CA 90095, USA
e Université Paris-Saclay, CNRS, CEA, Institut de Physique Théorique, 91191 Gif-sur-Yvette, France

Abstract: We introduce twisted triple crossing diagram maps, collections of points in projective space associated to bipartite graphs on the cylinder, and use them to provide geometric realizations of the cluster integrable systems of Goncharov and Kenyon constructed from toric dimer models. Using this notion, we provide geometric proofs that the pentagram map and the cross-ratio dynamics integrable systems are cluster integrable systems. We show that in appropriate coordinates, cross-ratio dynamics is described by geometric $R$-matrices, which solves the open question of finding a cluster algebra structure describing cross-ratio dynamics.

Keywords: discrete integrable systems, dimer model, cluster algebras, pentagram map, triple crossing diagram maps.

MSC: 37J70, 82B20, 13F60

Received: December 23, 2024; in final form May 20, 2025; Published online June 3, 2025

Language: English

DOI: 10.3842/SIGMA.2025.040


ArXiv: 2108.12692


© Steklov Math. Inst. of RAS, 2025