RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2025 Volume 21, 046, 49 pp. (Mi sigma2163)

Correlated Gromov–Witten Invariants

Thomas Blommea, Francesca Caroccib

a Université de Neuchátel, rue Émile Argan 11, Neuchátel 2000, Switzerland
b Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, Roma 00133, Italy

Abstract: We introduce a geometric refinement of Gromov–Witten invariants for $\mathbb P^1$-bundles relative to the natural fiberwise boundary structure. We call these refined invariant correlated Gromov–Witten invariants. Furthermore, we prove a refinement of the degeneration formula keeping track of the correlation. Finally, combining certain invariance properties of the correlated invariant, a local computation and the refined degeneration formula we follow floor diagram techniques to prove regularity results for the generating series of the invariants in the case of $\mathbb P^1$-bundles over elliptic curves. Such invariants are expected to play a role in the degeneration formula for reduced Gromov–Witten invariants for abelian and K3 surfaces.

Keywords: Gromov–Witten invariants, enumerative geometry, elliptic curves, decomposition formula.

MSC: 14N35, 14N10, 14J26

Received: September 24, 2024; in final form June 9, 2025; Published online June 18, 2025

Language: English

DOI: 10.3842/SIGMA.2025.046


ArXiv: 2409.09472


© Steklov Math. Inst. of RAS, 2025