RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2025 Volume 21, 071, 6 pp. (Mi sigma2187)

Linear Independence for $A_1^{(1)}$ by Using $C_{2}^{(1)}$

Mirko Primca, Goran Trupčevićb

a Faculty of Science, University of Zagreb, Zagreb, Croatia
b Faculty of Teacher Education, University of Zagreb, Zagreb, Croatia

Abstract: In the previous paper, the authors proved linear independence of the combinatorial spanning set for standard $C_\ell^{(1)}$-module $L(k\Lambda_0)$ by establishing a connection with the combinatorial basis of Feigin–Stoyanovsky's type subspace $W(k\Lambda_0)$ of $C_{2\ell}^{(1)}$-module $L(k\Lambda_0)$. In this note we extend this argument for $C_{1}^{(1)}\cong A_{1}^{(1)}$ to all standard $A_{1}^{(1)}$-modules $L(\Lambda)$. In the proof we use a coefficient of an intertwining operator of the type $\binom{L(\Lambda_2)}{L(\Lambda_1)\ L(\Lambda_1)}$ for standard $C_{2}^{(1)}$-modules.

Keywords: affine Lie algebras, standard modules, Feigin–Stoyanovsky's type subspace, combinatorial basis.

MSC: 17B67, 17B69

Received: May 2, 2025; in final form August 12, 2025; Published online August 19, 2025

Language: English

DOI: 10.3842/SIGMA.2025.071


ArXiv: 2504.15597


© Steklov Math. Inst. of RAS, 2025