RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2025 Volume 21, 093, 19 pp. (Mi sigma2209)

Stolz Positive Scalar Curvature Structure Groups, Proper Actions and Equivariant $2$-Types

Massimiliano Puglisia, Thomas Schickb, Vito Felice Zenobic

a Dipartimento di Matematica, Sapienza Università di Roma, Italy
b Mathematisches Institut, Universität Göttingen, Germany
c Istituto Nazionale di Alta Matematica, Piazzale Aldo Moro 5, 00185 Roma, Italy

Abstract: In this note, we study equivariant versions of Stolz' $R$-groups, the positive scalar curvature structure groups $R^{\mathrm spin}_n(X)^G$, for proper actions of discrete groups $G$. We define the concept of a fundamental groupoid functor for a $G$-space, encapsulating all the fundamental group information of all the fixed point sets and their relations. We construct classifying spaces for fundamental groupoid functors. As a geometric result, we show that Stolz' equivariant $R$-group $R^{\mathrm spin}_n(X)^G$ depends only on the fundamental groupoid functor of the reference space $X$. The proof covers at the same time in a concise and clear way the classical non-equivariant case.

Keywords: positive scalar curvature, universal space for proper actions, spin bordism, fundamental groupoid.

MSC: 57R91, 57R90, 53C27, 53C21

Received: February 11, 2025; in final form October 19, 2025; Published online October 30, 2025

Language: English

DOI: 10.3842/SIGMA.2025.093


ArXiv: 2412.07955


© Steklov Math. Inst. of RAS, 2025