Abstract:
We provide two equivalent approaches for computing the tail distribution of the first hitting time of the boundary of the Weyl chamber by a radial Dunkl process. The first approach is based on a spectral problem with initial value. The second one expresses the tail distribution by means of the $W$-invariant Dunkl–Hermite polynomials.
Illustrative examples are given by the irreducible root systems of types $A$, $B$, $D$. The paper ends with an interest in the case of Brownian motions for which our formulae take determinantal forms.