RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2008 Volume 4, 083, 9 pp. (Mi sigma336)

This article is cited in 6 papers

A Limit Relation for Dunkl–Bessel Functions of Type A and B

Margit Röslera, Michael Voitb

a Institut für Mathematik, TU Clausthal, Erzstr. 1, D-38678 Clausthal-Zellerfeld, Germany
b Fachbereich Mathematik, TU Dortmund, Vogelpothsweg 87, D-44221 Dortmund, Germany

Abstract: We prove a limit relation for the Dunkl–Bessel function of type $B_N$ with multiplicity parameters $k_1$ on the roots $\pm e_i$ and $k_2$ on $\pm e_i\pm e_j$ where $k_1$ tends to infinity and the arguments are suitably scaled. It gives a good approximation in terms of the Dunkl-type Bessel function of type $A_{N-1}$ with multiplicity $k_2$. For certain values of $k_2$ an improved estimate is obtained from a corresponding limit relation for Bessel functions on matrix cones.

Keywords: Bessel functions; Dunkl operators; asymptotics.

MSC: 33C67; 43A85; 20F55

Received: October 21, 2008; in final form November 26, 2008; Published online December 3, 2008

Language: English

DOI: 10.3842/SIGMA.2008.083



Bibliographic databases:
ArXiv: 0812.0739


© Steklov Math. Inst. of RAS, 2025