RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2009 Volume 5, 016, 12 pp. (Mi sigma362)

This article is cited in 16 papers

Imaginary Powers of the Dunkl Harmonic Oscillator

Adam Nowak, Krzysztof Stempak

Instytut Matematyki i Informatyki, Politechnika Wroclawska, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland

Abstract: In this paper we continue the study of spectral properties of the Dunkl harmonic oscillator in the context of a finite reflection group on $\mathbb R^d$ isomorphic to $\mathbb Z^d_2$. We prove that imaginary powers of this operator are bounded on $L^p$, $1<p<\infty$, and from $L^1$ into weak $L^1$.

Keywords: Dunkl operators; Dunkl harmonic oscillator; imaginary powers; Calderón–Zygmund operators.

MSC: 42C10; 42C20

Received: October 14, 2008; in final form February 8, 2009; Published online February 11, 2009

Language: English

DOI: 10.3842/SIGMA.2009.016



Bibliographic databases:
ArXiv: 0902.1958


© Steklov Math. Inst. of RAS, 2025