RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2009 Volume 5, 021, 30 pp. (Mi sigma367)

This article is cited in 3 papers

Toeplitz Quantization and Asymptotic Expansions: Geometric Construction

Miroslav Englisab, Harald Upmeierc

a Mathematics Institute, Žitná 25, 11567 Prague 1, Czech Republic
b Mathematics Institute, Silesian University at Opava, Na Rybníčku 1, 74601 Opava, Czech Republic
c Fachbereich Mathematik, Universität Marburg, D-35032 Marburg, Germany

Abstract: For a real symmetric domain $G_{\mathbb R}/K_{\mathbb R}$, with complexification $G_{\mathbb C}/K_{\mathbb C}$, we introduce the concept of “star-restriction” (a real analogue of the “star-products” for quantization of Kähler manifolds) and give a geometric construction of the $G_{\mathbb R}$-invariant differential operators yielding its asymptotic expansion.

Keywords: bounded symmetric domain; Toeplitz operator; star product; covariant quantization.

MSC: 32M15; 46E22; 47B35; 53D55

Received: October 1, 2008; in final form February 14, 2009; Published online February 20, 2009

Language: English

DOI: 10.3842/SIGMA.2009.021



Bibliographic databases:
ArXiv: 0902.3628


© Steklov Math. Inst. of RAS, 2025