RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2009 Volume 5, 026, 14 pp. (Mi sigma372)

This article is cited in 9 papers

Induced Modules for Affine Lie Algebras

Vyacheslav Futorny, Iryna Kashuba

Institute of Mathematics, University of São Paulo, Caixa Postal 66281 CEP 05314-970, São Paulo, Brazil

Abstract: We study induced modules of nonzero central charge with arbitrary multiplicities over affine Lie algebras. For a given pseudo parabolic subalgebra $\mathcal P$ of an affine Lie algeba $\mathfrak G$, our main result establishes the equivalence between a certain category of $\mathcal P$-induced $\mathfrak G$-modules and the category of weight $\mathcal P$-modules with injective action of the central element of $\mathfrak G$. In particular, the induction functor preserves irreducible modules. If $\mathcal P$ is a parabolic subalgebra with a finite-dimensional Levi factor then it defines a unique pseudo parabolic subalgebra $\mathcal P^{ps}$, $\mathcal P\subset\mathcal P^{ps}$. The structure of $\mathcal P$-induced modules in this case is fully determined by the structure of $\mathcal P^{ps}$-induced modules. These results generalize similar reductions in particular cases previously considered by V. Futorny, S. König, V. Mazorchuk [Forum Math. 13 (2001), 641–661], B. Cox [Pacific J. Math. 165 (1994), 269–294] and I. Dimitrov, V. Futorny, I. Penkov [Comm. Math. Phys. 250 (2004), 47–63].

Keywords: affine Kac–Moody algebras; induced modules; parabolic subalgebras; Borel subalgebras.

MSC: 17B65; 17B67

Received: October 20, 2008; in final form March 1, 2009; Published online March 4, 2009

Language: English

DOI: 10.3842/SIGMA.2009.026



Bibliographic databases:
ArXiv: 0810.3458


© Steklov Math. Inst. of RAS, 2024