RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2009 Volume 5, 028, 27 pp. (Mi sigma374)

This article is cited in 5 papers

Hochschild Cohomology and Deformations of Clifford–Weyl Algebras

Ian M. Mussona, Georges Pinczonb, Rosane Ushirobirab

a Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201-0413, USA
b Institut de Mathématiques de Bourgogne, Université de Bourgogne, B. P. 47870, F-21078 Dijon Cedex, France

Abstract: We give a complete study of the Clifford–Weyl algebra $\mathcal C(n,2k)$ from Bose–Fermi statistics, including Hochschild cohomology (with coefficients in itself). We show that $\mathcal C(n,2k)$ is rigid when $n$ is even or when $k\neq1$. We find all non-trivial deformations of $\mathcal C(2n+1,2)$ and study their representations.

Keywords: Hochschild cohomology; deformation theory; Clifford algebras; Weyl algebras; Clifford–Weyl algebras; parastatistics.

MSC: 16E40; 16G99; 16S80; 17B56; 17B10; 53D55

Received: October 1, 2008; in final form February 25, 2009; Published online March 7, 2009

Language: English

DOI: 10.3842/SIGMA.2009.028



Bibliographic databases:
ArXiv: 0810.0184


© Steklov Math. Inst. of RAS, 2024