RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2009 Volume 5, 079, 12 pp. (Mi sigma424)

This article is cited in 7 papers

About Twistor Spinors with Zero in Lorentzian Geometry

Felipe Leitner

Universität Stuttgart, Institut für Geometrie und Topologie, Fachbereich Mathematik, Pfaffenwaldring 57, D-70550 Stuttgart, Germany

Abstract: We describe the local conformal geometry of a Lorentzian spin manifold $(M,g)$ admitting a twistor spinor $\phi$ with zero. Moreover, we describe the shape of the zero set of $\phi$. If $\phi$ has isolated zeros then the metric $g$ is locally conformally equivalent to a static monopole. In the other case the zero set consists of null geodesic(s) and $g$ is locally conformally equivalent to a Brinkmann metric. Our arguments utilise tractor calculus in an essential way. The Dirac current of $\phi$, which is a conformal Killing vector field, plays an important role for our discussion as well.

Keywords: Lorentzian spin geometry; conformal Killing spinors; tractors and twistors.

MSC: 53C27; 53B30

Received: April 6, 2009; in final form July 10, 2009; Published online July 28, 2009

Language: English

DOI: 10.3842/SIGMA.2009.079



Bibliographic databases:
ArXiv: math.DG/0406298


© Steklov Math. Inst. of RAS, 2025