RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2009 Volume 5, 091, 12 pp. (Mi sigma437)

A Method for Weight Multiplicity Computation Based on Berezin Quantization

David Bar-Moshe

Dune Medical Devices Ltd., P. O. Box 3131, Caesarea Industrial Park, Israel

Abstract: Let $G$ be a compact semisimple Lie group and $T$ be a maximal torus of $G$. We describe a method for weight multiplicity computation in unitary irreducible representations of $G$, based on the theory of Berezin quantization on $G/T$. Let $\Gamma _{\mathrm{hol}}(\mathcal L^\lambda)$ be the reproducing kernel Hilbert space of holomorphic sections of the homogeneous line bundle $\mathcal L^\lambda$ over $G/T$ associated with the highest weight $\lambda$ of the irreducible representation $\pi _\lambda$ of $G$. The multiplicity of a weight $m$ in $\pi _\lambda$ is computed from functional analytical structure of the Berezin symbol of the projector in $\Gamma _{\mathrm{hol}}(\mathcal L^\lambda)$ onto subspace of weight $m$. We describe a method of the construction of this symbol and the evaluation of the weight multiplicity as a rank of a Hermitian form. The application of this method is described in a number of examples.

Keywords: Berezin quantization; representation theory.

MSC: 22E46; 32M05; 32M10; 53D50; 81Q70

Received: July 26, 2009; in final form September 16, 2009; Published online September 25, 2009

Language: English

DOI: 10.3842/SIGMA.2009.091



Bibliographic databases:
ArXiv: math-ph/0306056


© Steklov Math. Inst. of RAS, 2024