RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2006 Volume 2, 019, 10 pp. (Mi sigma47)

This article is cited in 8 papers

Eigenvectors of Open Bazhanov–Stroganov Quantum Chain

Nikolai Iorgov

Bogolyubov Institute for Theoretical Physics, 14b Metrolohichna Str., Kyiv, 03143 Ukraine

Abstract: In this contribution we give an explicit formula for the eigenvectors of Hamiltonians of open Bazhanov–Stroganov quantum chain. The Hamiltonians of this quantum chain is defined by the generation polynomial $A_n(\lambda)$ which is upper-left matrix element of monodromy matrix built from the cyclic $L$-operators. The formulas for the eigenvectors are derived using iterative procedure by Kharchev and Lebedev and given in terms of $w_p(s)$-function which is a root of unity analogue of $\Gamma_q$-function.

Keywords: quantum integrable systems; Bazhanov–Stroganov quantum chain.

MSC: 81R12; 81R50

Received: November 29, 2005; in final form January 30, 2006; Published online February 4, 2006

Language: English

DOI: 10.3842/SIGMA.2006.019



Bibliographic databases:
ArXiv: nlin.SI/0602010


© Steklov Math. Inst. of RAS, 2025