Abstract:
Thermalization in highly excited quantum many-body system does not necessarily mean a complete memory loss of the way the system was formed. This effect may pave a way for a quantum computing, with a large number of qubits $n\simeq 100$–1000, far beyond the quantum chaos border. One of the manifestations of such a thermalized non-equilibrated matter is revealed by a strong asymmetry around 90$^\circ$ c.m. of evaporating proton yield in the $\mathrm{Bi}(\gamma,p)$ photonuclear reaction. The effect is described in terms of anomalously slow cross symmetry phase relaxation in highly excited quantum many-body systems with exponentially large Hilbert space dimensions. In the above reaction this phase relaxation is about eight orders of magnitude slower than energy relaxation (thermalization).