RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2011 Volume 7, 071, 20 pp. (Mi sigma629)

This article is cited in 5 papers

From Quantum $A_N$ (Calogero) to $H_4$ (Rational) Model

Alexander V. Turbiner

Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 México, D.F., Mexico

Abstract: A brief and incomplete review of known integrable and (quasi)-exactly-solvable quantum models with rational (meromorphic in Cartesian coordinates) potentials is given. All of them are characterized by $(i)$ a discrete symmetry of the Hamiltonian, $(ii)$ a number of polynomial eigenfunctions, $(iii)$ a factorization property for eigenfunctions, and admit $(iv)$ the separation of the radial coordinate and, hence, the existence of the 2nd order integral, $(v)$ an algebraic form in invariants of a discrete symmetry group (in space of orbits).

Keywords: (quasi)-exact-solvability; rational models; algebraic forms; Coxeter (Weyl) invariants, hidden algebra.

MSC: 35P99; 47A15; 47A67; 47A75

Received: February 28, 2011; in final form July 12, 2011; Published online July 18, 2011

Language: English

DOI: 10.3842/SIGMA.2011.071



Bibliographic databases:
ArXiv: 1106.5017


© Steklov Math. Inst. of RAS, 2024