RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2012 Volume 8, 029, 9 pp. (Mi sigma706)

Orbit representations from linear mod 1 transformations

Carlos Correia Ramosa, Nuno Martinsb, Paulo R. Pintob

a Centro de Investigação em Matemática e Aplicações, R. Romão Ramalho, 59, 7000-671 Évora, Portugal
b Department of Mathematics, CAMGSD, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

Abstract: We show that every point $x_0\in [0,1]$ carries a representation of a $C^*$-algebra that encodes the orbit structure of the linear mod 1 interval map $f_{\beta,\alpha}(x)=\beta x +\alpha$. Such $C^*$-algebra is generated by partial isometries arising from the subintervals of monotonicity of the underlying map $f_{\beta,\alpha}$. Then we prove that such representation is irreducible. Moreover two such of representations are unitarily equivalent if and only if the points belong to the same generalized orbit, for every $\alpha\in [0,1[$ and $\beta\geq 1$.

Keywords: interval maps, symbolic dynamics, $C^*$-algebras, representations of algebras.

MSC: 46L55, 37B10, 46L05

Received: March 14, 2012; in final form May 9, 2012; Published online May 16, 2012

Language: English

DOI: 10.3842/SIGMA.2012.029



Bibliographic databases:
ArXiv: 1205.3553


© Steklov Math. Inst. of RAS, 2024