Abstract:
We report the identification and construction of raising and lowering operators for the complete eigenfunctions of isotropic harmonic oscillators confined by dihedral angles, in circular cylindrical and spherical coordinates; as well as for the hydrogen atom in the same situation of confinement, in spherical, parabolic and prolate spheroidal coordinates. The actions of such operators on any eigenfunction are examined in the respective coordinates, illustrating the possibility of generating the complete bases of eigenfunctions in the respective coordinates for both physical systems. The relationships between the eigenfunctions in each pair of coordinates, and with the same eigenenergies are also illustrated.
Keywords:Ladder operators; harmonic oscillator; hydrogen atom; confinement in dihedral angles.