RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2006 Volume 2, 055, 5 pp. (Mi sigma83)

This article is cited in 3 papers

On the Existence of Configurations of Subspaces in a Hilbert Space with Fixed Angles

Natasha D. Popova, Yurii S. Samoilenko

Institute of Mathematics of NAS of Ukraine, 3 Tereshchenkivs'ka Str., Kyiv-4, 01601 Ukraine

Abstract: For a class of $*$-algebras, where $*$-algebra $A_{\Gamma,\tau}$ is generated by projections associated with vertices of graph $\Gamma$ and depends on a parameter $\tau$ ($0<\tau\leq 1$), we study the sets $\Sigma_\Gamma$ of values of $\tau$ such that the algebras $A_{\Gamma,\tau}$ have nontrivial $*$-representations, by using the theory of spectra of graphs. In other words, we study such values of $\tau$ that the corresponding configurations of subspaces in a Hilbert space exist.

Keywords: representations of $*$-algebras; Temperley–Lieb algebras.

MSC: 16G99; 20C08

Received: December 1, 2005; in final form April 30, 2006; Published online May 29, 2006

Language: English

DOI: 10.3842/SIGMA.2006.055



Bibliographic databases:
ArXiv: math.RT/0605717


© Steklov Math. Inst. of RAS, 2025