RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2014 Volume 10, 015, 8 pp. (Mi sigma880)

This article is cited in 7 papers

On the Smoothness of the Noncommutative Pillow and Quantum Teardrops

Tomasz Brzeziński

Department of Mathematics, Swansea University, Singleton Park, Swansea SA2 8PP, UK

Abstract: Recent results by Krähmer [Israel J. Math. 189 (2012), 237–266] on smoothness of Hopf–Galois extensions and by Liu [arxiv:1304.7117] on smoothness of generalized Weyl algebras are used to prove that the coordinate algebras of the noncommutative pillow orbifold [Internat. J. Math. 2 (1991), 139–166], quantum teardrops ${\mathcal O}({\mathbb W}{\mathbb P}_q(1,l))$ [Comm. Math. Phys. 316 (2012), 151–170], quantum lens spaces ${\mathcal O}(L_q(l;1,l))$ [Pacific J. Math. 211 (2003), 249–263], the quantum Seifert manifold ${\mathcal O}(\Sigma_q^3)$ [J. Geom. Phys. 62 (2012), 1097–1107], quantum real weighted projective planes ${\mathcal O}({\mathbb R}{\mathbb P}_q^2(l;\pm))$ [PoS Proc. Sci. (2012), PoS(CORFU2011), 055, 10 pages] and quantum Seifert lens spaces ${\mathcal O}(\Sigma_q^3(l;-))$ [Axioms 1 (2012), 201–225] are homologically smooth in the sense that as their own bimodules they admit finitely generated projective resolutions of finite length.

Keywords: smooth algebra; generalized Weyl algebra; strongly graded algebra; noncommutative pillow; quantum teardrop; quantum lens space; quantum real weighted projective plane.

MSC: 58B32; 58B34

Received: December 3, 2013; in final form February 9, 2014; Published online February 14, 2014

Language: English

DOI: 10.3842/SIGMA.2014.015



Bibliographic databases:
ArXiv: 1311.4758


© Steklov Math. Inst. of RAS, 2025