RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2014 Volume 10, 110, 10 pp. (Mi sigma975)

This article is cited in 5 papers

Demazure Modules, Chari–Venkatesh Modules and Fusion Products

Bhimarthi Ravinder

The Institute of Mathematical Sciences, CIT campus, Taramani, Chennai 600113, India

Abstract: Let $\mathfrak{g}$ be a finite-dimensional complex simple Lie algebra with highest root $\theta$. Given two non-negative integers $m$$n$, we prove that the fusion product of $m$ copies of the level one Demazure module $D(1,\theta)$ with $n$ copies of the adjoint representation $\mathrm{ev}_0 V(\theta)$ is independent of the parameters and we give explicit defining relations. As a consequence, for $\mathfrak{g}$ simply laced, we show that the fusion product of a special family of Chari–Venkatesh modules is again a Chari–Venkatesh module. We also get a description of the truncated Weyl module associated to a multiple of $\theta$.

Keywords: current algebra; Demazure module; Chari–Venkatesh module; truncated Weyl module; fusion product.

MSC: 17B67; 17B10

Received: September 11, 2014; in final form December 1, 2014; Published online December 12, 2014

Language: English

DOI: 10.3842/SIGMA.2014.110



Bibliographic databases:
ArXiv: 1409.0274


© Steklov Math. Inst. of RAS, 2024