RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2014 Volume 10, 116, 10 pp. (Mi sigma981)

This article is cited in 4 papers

Non-Symmetric Basic Hypergeometric Polynomials and Representation Theory for Confluent Cherednik Algebras

Marta Mazzocco

Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, UK

Abstract: In this paper we introduce a basic representation for the confluent Cherednik algebras $\mathcal H_{\rm V}$, $\mathcal H_{\rm III}$, $\mathcal H_{\rm III}^{D_7}$ and $\mathcal H_{\rm III}^{D_8}$ defined in arXiv:1307.6140. To prove faithfulness of this basic representation, we introduce the non-symmetric versions of the continuous dual $q$-Hahn, Al-Salam–Chihara, continuous big $q$-Hermite and continuous $q$-Hermite polynomials.

Keywords: DAHA; Cherednik algebra; $q$-Askey scheme; Askey–Wilson polynomials.

MSC: 33D80; 33D52; 16T99

Received: October 31, 2014; in final form December 19, 2014; Published online December 30, 2014

Language: English

DOI: 10.3842/SIGMA.2014.116



Bibliographic databases:
ArXiv: 1409.4287


© Steklov Math. Inst. of RAS, 2024