RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2015 Volume 11, 013, 18 pp. (Mi sigma994)

This article is cited in 2 papers

A Central Limit Theorem for Random Walks on the Dual of a Compact Grassmannian

Margit Röslera, Michael Voitb

a Institut für Mathematik, Universität Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany
b Fakultät für Mathematik, Technische Universität Dortmund, Vogelpothsweg 87, D-44221 Dortmund, Germany

Abstract: We consider compact Grassmann manifolds $G/K$ over the real, complex or quaternionic numbers whose spherical functions are Heckman–Opdam polynomials of type $BC$. From an explicit integral representation of these polynomials we deduce a sharp Mehler–Heine formula, that is an approximation of the Heckman–Opdam polynomials in terms of Bessel functions, with a precise estimate on the error term. This result is used to derive a central limit theorem for random walks on the semi-lattice parametrizing the dual of $G/K$, which are constructed by successive decompositions of tensor powers of spherical representations of $G$. The limit is the distribution of a Laguerre ensemble in random matrix theory. Most results of this paper are established for a larger continuous set of multiplicity parameters beyond the group cases.

Keywords: Mehler–Heine formula; Heckman–Opdam polynomials; Grassmann manifolds; spherical functions; central limit theorem; asymptotic representation theory.

MSC: 33C52; 43A90; 60F05; 60B15; 43A62; 33C80; 33C67

Received: October 14, 2014; in final form February 3, 2015; Published online February 10, 2015

Language: English

DOI: 10.3842/SIGMA.2015.013



Bibliographic databases:
ArXiv: 1409.4213


© Steklov Math. Inst. of RAS, 2025