RUS  ENG
Full version
JOURNALS // Symmetry, Integrability and Geometry: Methods and Applications // Archive

SIGMA, 2015 Volume 11, 016, 17 pp. (Mi sigma997)

This article is cited in 7 papers

Extension Fullness of the Categories of Gelfand–Zeitlin and Whittaker Modules

Kevin Coulembiera, Volodymyr Mazorchukb

a Department of Mathematical Analysis, Ghent University, Krijgslaan 281, 9000 Gent, Belgium
b Department of Mathematics, Uppsala University, Box 480, SE-751 06, Uppsala, Sweden

Abstract: We prove that the categories of Gelfand–Zeitlin modules of $\mathfrak{g}=\mathfrak{gl}_n$ and Whittaker modules associated with a semi-simple complex finite-dimensional algebra $\mathfrak{g}$ are extension full in the category of all $\mathfrak{g}$-modules. This is used to estimate and in some cases determine the global dimension of blocks of the categories of Gelfand–Zeitlin and Whittaker modules.

Keywords: extension fullness; Gelfand–Zeitlin modules; Whittaker modules; Yoneda extensions; homological dimension.

MSC: 16E30; 17B10

Received: September 25, 2014; in final form February 20, 2015; Published online February 24, 2015

Language: English

DOI: 10.3842/SIGMA.2015.016



Bibliographic databases:
ArXiv: 1409.5717


© Steklov Math. Inst. of RAS, 2025