RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Industrial'noi Matematiki // Archive

Sib. Zh. Ind. Mat., 2018 Volume 21, Number 4, Pages 39–50 (Mi sjim1020)

On stability of the inverted pendulum motion with a vibrating suspension point

G. V. Demidenkoab, A. V. Dulepovab

a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090 Russia

Abstract: Under study is the stability of the inverted pendulum motion whose suspension point vibrates according to a sinusoidal law along a straight line having a small angle with the vertical. Formulating and using the contracting mapping principle and the criterion of asymptotic stability in terms of solvability of a special boundary value problem for the Lyapunov differential equation, we prove that the pendulum performs stable periodic movements under sufficiently small amplitude of oscillations of the suspension point and sufficiently high frequency of oscillations.

Keywords: inverted pendulum, asymptotic stability, Lyapunov differential equation, contracting mapping principle.

UDC: 517.925.44

Received: 29.06.2018

DOI: 10.17377/sibjim.2018.21.404


 English version:
Journal of Applied and Industrial Mathematics, 2018, 12:4, 607–618

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024