RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Industrial'noi Matematiki // Archive

Sib. Zh. Ind. Mat., 2019 Volume 22, Number 4, Pages 19–25 (Mi sjim1061)

This article is cited in 4 papers

Structure of the phase portrait of a piecewise-linear dynamical system

N. B. Ayupovaab, V. P. Golubyatnikovac

a Sobolev Institute of Mathematics SB RAS, pr. Akad. Koptyuga 4, 630090 Novosibirsk
b Novosibirsk State University, ul. Pirogova 1, 630090 Novosibirsk
c Yakovlev Novosibirsk Military Institute, ul. Kluch-Kamyshenskoe Plato 6/2, 630114 Novosibirsk

Abstract: We consider some piecewise linear $4$-dimensional dynamical system that models a gene network regulated by one negative feedback and three positive feedbacks. Glass and Pasternack described the conditions for the existence of a stable cycle in this model. We construct an invariant piecewise linear surface with nontrivial link with the Glass–Pasternack cycle outside the attraction domain of this stable cycle in the phase portrait of this system.

Keywords: block-linear dynamical systems, phase portraits, invariant surfaces, cycles, Poincaré mapping, gene network models, Hopf link.

UDC: 514.763.81

Received: 05.07.2019
Revised: 05.07.2019
Accepted: 05.09.2019

DOI: 10.33048/sibjim.2019.22.402


 English version:
Journal of Applied and Industrial Mathematics, 2019, 13:4, 606–611


© Steklov Math. Inst. of RAS, 2025