RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Industrial'noi Matematiki // Archive

Sib. Zh. Ind. Mat., 2020 Volume 23, Number 3, Pages 16–30 (Mi sjim1095)

An MHD model of an incompressible polymeric fluid: linear instability of a steady state

A. M. Blokhinab, A. S. Rudometovaab, D. L. Tkachevab

a Sobolev Institute of Mathematics SB RAS, pr. Acad. Koptyuga 4, Novosibirsk 630090, Russia
b Novosibirsk State University, ul. Pirogova 1, Novosibirsk 630090, Russia

Abstract: We study linear stability of a steady state for a generalization of the basic rheological Pokrovskii—Vinogradov model which describes the flows of melts and solutions of an incompressible viscoelastic polymeric medium in the nonisothermal case under the influence of a magnetic field. We prove that the corresponding linearized problem describing magnetohydrodynamic flows of polymers in an infinite plane channel has the following property: For some values of the conduction current which is given on the electrodes (i.e. at the channel boundaries), there exist solutions whose amplitude grows exponentially (in the class of functions periodic along the channel).

Keywords: incompressible viscoelastic polymeric fluid, rheological correlation, magnetohydrodynamic flow, steady state, Poiseuille-type flow, spectrum, Lyapunov stability. .

UDC: 532.5.013.4:532.135

Received: 15.04.2020
Revised: 15.04.2020
Accepted: 16.07.2020

DOI: 10.33048/SIBJIM.2020.23.302


 English version:
Journal of Applied and Industrial Mathematics, 2020, 14:3, 430–442

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024