Abstract:
We expose the complete integration of the simplest matrix Riccati equation in the two- and three-dimensional cases for an arbitrary linear differential operator. The solution is constructed in terms of the Jordan form of an unknown matrix and the corresponding similarity matrix. We show that a similarity matrix is always representable as the product of two matrices one of which is an invariant of the differential operator.
Keywords:matrix Riccati equation, algebraic invariant, Jordan form.
.