RUS  ENG
Full version
JOURNALS // Sibirskii Zhurnal Industrial'noi Matematiki // Archive

Sib. Zh. Ind. Mat., 2022 Volume 25, Number 4, Pages 206–220 (Mi sjim1206)

On existence of viscosity solutions for anisotropic parabolic equations with time-dependent exponents

Ar. S. Tersenov

Sobolev Institute of Mathematics SB RAS, pr. Acad. Koptyuga 4, Novosibirsk 630090, Russia

Abstract: In the present paper we consider the Cauchy—Dirichlet problem for anisotropic parabolic equation with gradient term which does not satisfy Bernstein—Nagumo condition. The existence and uniqueness of viscosity solution for this problem is proved. This solution is Hølder continuous in time and Lipschitz continuous in spatial variables.

Keywords: anisotropic parabolic equations, viscosity solutions, time-dependent exponents. .

UDC: 517.95

Received: 05.07.2022
Revised: 05.08.2022
Accepted: 29.09.2022

DOI: 10.33048/SIBJIM.2021.25.416



© Steklov Math. Inst. of RAS, 2024